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NUClEAR WASTE CANISTER THERMALLY INDUCED MOTION 
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Sandia La.boratories 1 Albuquerque, New Mexico 87185 

ABSTRACT 

The movement of canisters containing beat producing nuclear wastes 

has been analyzed using a single canister model in a salt environment. 

Steady state and transient analyses both indicate that only minimal 

canister movement will result from buoyancy of heated salt. 
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I. INTR<DUCTION 

The movement of canisters containing beat generatins nuclear wastes 

buried in a 1alt repoa1tcry has been questioned, The existence of 

buoyant forces due to thermally produced·density differences suggests 

the possibility of initiating convective cells in a plastic medium like 

salt. A proper assessment of this motion includes consideration of the 

temperature dependence of the effective viscosity and thermal conductivity 

of the salt as well as decrease in the thermal output of the beat 

generating wastes with time. 

A thermomecbanically coupled formulation for creeping viscous flow 
-·---·-· -·-··------·---· ---·----------~---------- ·-------

end heat transfer that includes the features mentioned earlier has been 
-- ---·····-- . -. ····-----------··· --~-~-----------·""···------···--------------~-

used to predict canister motion. The large deformation creeping behavior . ·-----·· -·. -- ---· . ----·---·~ ···-------
of the salt over long periods of time was represented as a viscous fluid 

with temperature dependent viscosity. Deformations were required to be 

incompressible and elastic response of the salt was assumed to be 

negligible in comparison to the viscous strains. The conductive-convective 

heat transfer equation was solved to obtain the temperature distributions 

within the salt-canister system. Temperature dependent thermal conduc-

tivity was included in the analyses. Coupling between the flow field 

and temperature distribution resulted from temperature dependent material 

properties, temperature dependent body forces, viscous dissipation and 

changes in the system geometry. The :Boussinesq approximation was applied 

in these analyses so that only tbe body forces in the equilibrium equ&tion 

were affected by changes in the salt density. Free expansion of the salt 

with temperature rises was assumed for the purpose of computing these 

body forces. This assumption led to the largest density differences and 
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therefore the greatest driving forces for upward salt flaw. Separate 

thermoelastic computations were performed to evaluate the validity of 

this free expansion assumption. 

An axisymmetric region 500 m in radius that extended 750 m above and 

below the ca.nister elevation was analyzed. Transient creeping now and 

heat transfer analyses began with an initial undeformed isothermal region 

and followed the movement of the canister as the salt heated and a convec

tive cell formed. The heat source resulted from the radioactive decay of 

tbe wastes in the canister. The source diminished with time based on a 

thirty year half life (a realistic approximation for heat producing nuclear 

wastes). The temperature fields predicted in the transient analyses 

served as input to the thermoelastic studies. Steady-state creeping flaw 

and heat transfer analyses were used to predict an upper bound on the 

magnitude of velocities, For the steady-state analyses, velocity fields 

and temperature distributions were computed assuming that the canister 

thermal output was constant (and equal to the maximum power for all times), 

Because the waste heat output decays with time, the actual temperatures 

would never reach values predicted using the constant source, Thus, 

velocities predicted using the steady-state temperature field grossly 

·overestimate actual velocities. 



------------------------------------·------------------------------

II. THERMOMECHANICAL SOW!ION METHCDS 

Computer codes based on the finite element method were utilized 

to predict the c:reepins viscous and thermoelastic expansion of the s&lt 

in the region of analysis. The creeping visc011s flow computations were 

performed using the COUPIEFLO [1,2,3] code, The thermoelastic computations 

were made with the Sandia version of the BMINES [4] program. 

COUPLEFLO is based on a formulation for creeping incompressible non-

Newtonian fluid flow. The Euler equations resulting from the variational 

principle for this formulation are: 

aa 
.=.!J. + pg = 0 
~j i 

p = p (1 .. aAT} 
0 

(l) 

(2) 

(3) 

(4) 

(5) 

where oij and o{j are the stress and stress deviator tensors; iij is the 

strain-rate tensor; ui is the velocity vector; gi is the gravity vector; 

p is the density; a is the volumetric expansivity; ~ is the viscosity; 

and 6T is the temperature rise. 

Equation (l) represents a force balance on the salt. In this equa-

tion the acceleration terms have been neglected, limiting the validity 

·--------·----------------

7 



1····-~-

8 

of the ana!yses to flows in which the inertia may be neglected in comparison 

to other terms in the equation. Equation (2) is a kinematic relationship 

between strain-rate and velocity. Equation (3) is the constitutive model 

used to approximate the secondary creep behavior of the salt. In the 

analYses presented, the viscosity is either constant or temperature 

dependent. Often, a Bingham viscoplastic model having a mjnjmum yield 

stress before flow besins is used to model the salt response. Experiments 

performed at Sandia [51 indicate that the yield stress is negligible and 

.that flow begins with very low stress values. In this case the Bingham 

model is equivalent to the model described by Equation (3). Equation (4) 

represents the incompressibility constraint placed on the allowed mode 

of deformations. Equation (5) indicates the relationship between salt 

density and changes in temperatures. Known velocities or traction 

vectors are applied along the boundaries. 

The heat transfer formulation in COUPLEFLO is based on the conductive-

convective energy equation: 

- k- .. pC u - + Q = oC -(\ ( CY.l' ) en' en' 
oxi ~i p 1 ax1 P a,. (6) 

where T is the temperature; k is the conductivity; Cp is the specific 

heat; ~ is the heat generation rate; and ,. is time. The heat generation 

rate, Q, decays with a prescribed half life 1n the transient analyses. 

Temperature dependent conductivity has been used in the analyses as 

indicated in the results. Known temperatures or heat fluxes are 

applied along the boundaries. 

The finite e1ement equations are formulated from & variational 

principle for the viscous flow equations and using Galerkin's method for 



·---------------------------·----------------------------------

the energy equation. Application of the Bouasineaq approximation in the 

formulation specifies that changes i~ density should be considered only 

when computing the body forces and neglected elaewhere. The equations of 

motion (Equation• (1) .. (5)) ue coupled to the eneru equation (Equation (6)) 

through viscous dissipation, temperature dependent material properties, 

temperature dependent body forces, material convection, and changing 

geometry. 

Transient analysis performed using COUPIEFLO begins with an undeformed 

isothel"'IIal salt medium and proceeds incrementally through time. First, 

the velocity distribution is determined frQm the momentum equations with 

material properties and body forces based on the salt at its initial 

temperature. The temperature distribution corresponding to the end of 

the first time step is then determined by solving the energy equation 

using e. Crank-Nicholson finite difference method in the time danain. The 

salt geometry then moved ahead to its defo~ed configuration at the end 

of the first time step though Euler integration of the velocity field. 

Subsequent movement of the salt is evaluated by continuing to step the 

solution ahead, each time using the velocities and temperatures at the 

end of the prior time step as initial conditions for the new time step. 

The steady-state analyses in COUPU:FLO are performed using an iterative 

technique that alternates between creeping viscous flow solutions and 

temperature solutions. First, the temperatm-e distribution is determined 

assuming no motion in the salt. Next the velocity field is determined 

using the temperature distribution previously obtained to define material 

properties and body forces. Then a new temperature distribution is 

obtained that includes viscous dissipation and material convection 

computed using the velocity field. The analysis continues to alternate 
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back and forth between solutions until the coupled temperature distribution 

and velocity field do not change from one iteration to the next. At this 

point, the velocity field determined from the temperature distribution is 

consistent with the temperature distribution obtained using the material 

convection and viscous dissipation resulting from that velocity field. 

COUPLEFLO uses isoparametric triangular elements with quadratic 

velocity approximations and linear pressure approxim&tions. It employs 

a frontal solution technique with Cholesky decomposition to solve the 

inatrix equations resulting from the f'ini te element formulations. 

The SAND!A-BMINES computer program is formulated for static, two- or 

three-dimensional stress analyses. The material properties package has 

been written especially to represent the response of geologic media. 

Both isotropic and anisotropic material behavior can be simulated using 

linear and nonlinear models. Themoelastic stress distributions and 

deformations can be computed using SANDIA-BMlNES. The code does not have 

the capabilities for heat transfer analyses, so provisions have been made 

for specifying the temperature field prior to the thermoelastic analyses. 

The SANDIA-BMINES finite element program uses the direct stiffness 

method of structural analYsis. Displacement degrees of freedom are defined 

at nodal points located at the corners of the elements. Stress and strain 

values are, in general, computed at element centroids. Nodal point forces, 

which include external loads and internal resisting forces, are caJibined 

into a glObal loads vector while the element stiffnesses are consolidated 

into a structural or global stiffness matrix. Incremental displacements 

are obtained from the equilibrium equations using a form of Choleslcy 

decomposition which involves tria.ngularization of the global stiffness 

matrix, reduction of the loads vector, and back substitution of the 



reduced load vector into the triangularized stiffness matrix. Interested 

readers should consult Ref. 4 for detailed discussions of the element and 

material properties librarie a, the computer prooeea:S.ns :feature a (i.e. , 

multibutfering techniques which allow efficient out-of-oore processing) 

and for discussions of other user oriented features such as tbe automatic 

mesh generator a.nd the bandwidth minimizer. Discussions or the therme.l 

stress analysis capabilities are found in Ref. 8. 
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lli. MODELING 

A schematic diagram of the model used for analysis of the canister 

movement is shown in Figure l. Axisymmetric meshes have been used for 

both the viscous flow and thermoelastic computations. The salt region 

in both cases extended to a radius of 500 m and to horizons 750 m above 

and below the canister. The canister initiallY was centrally positioned 

in this region. 

Boundary conditions for the region are also indicated on Figure l 

for both the viscous flow B.naJ..yses and the thenna1 analyses. Kinematic 

constraints of ~ero radial velocity existed along the centerline and along 

the outer radial boundary while zero axial velocity was imposed on the 

lower horizon. The upper surface was assumed to have zero applied trac-

tion vectors. Initially, the salt and canister are motionless. 

The thermal boundary conditions are also shown in Figure 1 for both 

the steady-state and transient analyses. In the transient analyses all 

boundaries were assumed to have zero heat flux. Throughout the transient 

analyses, very little temperature rise at the boundary was observed 

(< l K), indicating that these boundary conditions remained valid. In 

the steady-state analyses, the boundary conditions consisted of requiring 

that all outside boundaries remained at the initial salt temperature. The 

initial temperature was 313 K and is constant throughout the region. 

The heat source was modeled with several point sources within the 

canister volume. These point sources decayed in the transient analyses 

with a 30 year bali' li:f'e. In the steady-state anaJ..yses the heat source 

was assumed to have a constant value equal to the maximum (initial) source 

strength for all times. 
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The finite element mesh used for both the heat transfer and creeping 

viscous flow computations is shown in Figure 2. The central portion of 

the mesh has been enlarged to show details of the mesh in the vicinity of 

the canister, The canister is repreaented by the two element• alolli the 

region axis of symmetry and centered at 750 m depth. The total mesh 

consists of 2o8 triangular elements. Each element bas six nodal points 

giving a quadratic approximation for velocity and a linear pressure 

approximation. The radius (maJdmmn) of the canister is 0.625 m at its 

center and has a double cone shape. The overall length is a:pproxilllately 

3 m. A second mesh was constructed for viscous flow canputations in 

which finer discretization was imposed around the canister. This allowed 

for modeling a smaller radius (.278m maximum at the center) canister. 

This mesh has 272 triangular elements, 603 velocity noda.l points, and 437 

pressure nodal points. Details of the zone near the canister are shcnm 

in Figure 3. 

In the thermoelastic analyses the left hand (inner) boundary simula.tes 

the centerline of this axisymmetric model; only vertical motion was allowed 

along this axis. No radial motion was allowed along the outer boundary of 

the model but the nodal points along this surface were tree to move 

vertically. The bottom boundary was assumed to be rigid, i.e., neither 

horizontal nor vertical motion was allwed. The top of the model had no 

displacement or traction boundary conditions imposed, The transient 

temperature fields computed using the COUPLEFLO program were used as 

input to the thermoe:J.astic analysis. 

The finite element mesh used in the thermoelastic model consists of 

680 quadrilateral elements. Each element has four nodal points (one at 

each corner of the element) and two displacement degrees of freedom, u and 
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v, at each node. Bilinear displacement fUnations are used to represent 

the variation of the displacement components within an element. There 

are 735 nodal points in the mesh. After the boundary condi tiona have 

been applied, there are 1369 degrees of :freedom remaining in the mesh. 

A portion of the mesh in the region nearest the canister is shown in 

Figure 4. 

The material property values used in the analyses are the best 

estimates currently available. In the course of the analyses, several 

values of viscosity and conductivity were considered within the ranges 

of measured values. The property values are summarized in Table 1 with 

the sources of information. 



rl. RESULTS OF 'mE ANALYSES 

Before analyzing canister movement associated with buoyant rising of 

the salt envlronment, a teat caae involving the ainkina of a nonheat 

produeing canister in an isothermal aa.lt medium was examined. The predicted 

downward velocity was· quite small, 29 pm/sec (24 m/1000 yr), for salt with 

a viscosity (p) equal to 0.5 x 1014 Pa-sec. This velocity compares well 

with the velocity of 23 pm/sec (19.2 m/1000 yr) computed using a simple 

Stokes' sphere model in which the drag force was equivalent to that of a 

sphere with the same diameter as the canister approximation in the finite 

element solution. 

Coupled transient analyses of the canister and salt motion were 

perfo~ed for models with constant and with variable salt viscosity. The 

salt conductivity in these analyses corresponds to the temperature 

dependent relationship listed in Table 2. Analysis using constant 

viscosity (~ = 0.5 x 1015 Pa-see) has been carried out to a time of 10 

years. Initially, the canister began to sink since the surrounding salt 

was isothermal and the canister density (4100 kgjm3) was greater than the 

salt. Heat from the wastes raised the salt temperature near the canister, 

providing the buoyant force necessary to start upward flow of the salt. 

The total canister velocity as a result of the upward salt velocity 

diminished. Eventually, the strength of the convective cell of tbe salt 

was sufficient to give the canister itself a.n upward velocity. The maximum 

canister velocity obtained during the 10 year period of analysis was 

1.5 pro/sec. 'l'he total displacement during this tinle was .0001 m. 

The transient analysis of the salt canister system using a model with 

temperature dependent salt viscosity (Table l) has been performed using 
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COUPLEFLO for times out to approximately 150 years. Again the canister 

started from rest in an isothermal salt medium and began to sink. Using 

the temperature dependent viscosity model, however, the downward velocity 

of the canister initially increased as salt in the viscosity of the 

canister was heated. This was a result of the reduced viscosity of salt 

near the canister allowing the canister velocity relative to the salt to 

·increase faster than the convective cell formed in the salt. Eventually, 

the convective cell gained strength and reduced the total canister velocity. 

After approximately 35 years the canister velocity became positive and 

subsequently obta.ined a peak upward velocity of 0.1 f:IA/sec. Arter approxi

mately 125 years, the convective cell velocity had diminished and the 

canister began to mcw-e downward again. The total displacement during 

the 150 years of analysis was -.0003 m. The velocity history for the 150 

year period is shown in Figure 5. The thermal history for points within 

the canister, at 10 m away from the canister, and 30 m away from the 

canister have been plotted in Figure 6. The convective circulation 

associated with the flow of salt can be readily seen from the velocity 

field depicted in Figure 7. Arrows in this figure indicate the direction 

of flow and are not proportional in length to the velocity magnitude. 

Steady-state analyses were performed to provide an upper bound on the 

magnitude of canister velocities. In these analYses the canister beat 

output was assumed to be constant and to equal the ma.ximum (initial) 

pow~r of the wastes. A variety of cases have been examined to study the 

effects of different canister densities, variable and constant viscosity, 

variable and constant thermal conductivity, and canister mesh sizes. The 

results of these anazyses are presented in Table 2. It is important to 

note that the velocities predicted in the steady-state analyses cannot be 



used to predict movement beyond periods in which significant heating 

occurs. Rather, predicted velocities can only be interpreted as IIIAX1murn 

upper bounds of velocity for aome time durizl8 beating (leas than 3000 

fe&ra from time ot emplt.cement) • 

The greatest upward velocity (26.5 pm/sec) was predicted for the 
. M) 

case of constant viscosity and conductivity. In this case the canister 

density was 4100 kg/~. The canister velocity decreases when temperature 
{pl 

dependent conductivity was included 1n the model. This was due to steeper 

thermal gradients near the canister that produced a smaller zone of low 

density salt. Thus, the driving force of the convective cell was less. 

By considering the temperature dependent viscosity of the salt, the 
t~ I 

canister's upward velocity was observed to diminisp further\ This was 

because the reduced viscosity in the vicinity of the canister (hot zone) 

increased the canister's velocity relative to the salt more than it 

increased the velocity of the convective cell within the salt medium. The 

effect of varying the canister's density is shown in Figure 8. The density 
(f) 

of 5800 kg/m can be seen to produce almost zero velocity. In this case 

the canister was sinking in the salt with nearly the same velocity that 
('') (0) 

the salt was rising. As the canister density decreased, the velocity of 

the canister in the salt decreased and the overall motion of the canister 

was upward. 

The effect of meshing was also exwned. The previous results were 
·~PI(' 

obtained using a relatively large canister radius (r • .615 m at the 
.H~ 

· widest point). Specifying a sraaller radius (r = .276 m) resu.tt~d in 
(~fsv.J/(;.) 

larger drag forces relative to the buoyant forces. Thus, the upward 

velocity of the canister increased. For the constant salt viscosity 

14 (u = .5 x 10 Fa-sec) and constant salt thermal conductivity the canister 
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velocity was 283 pm/sec; whereas, for variable conductivit~ and viscosity 

L&) 
{Table 1) the canister velocity was 2.5 pmfa. In both caaea the canister 

density was 4100 kf!./m3. The convective cell salt velocities and tempera
t 

ture distributions were the same for both mesh configurations. '.~ .•· '__...? 
. ' ./ 

The displacement of the surface at the repository centerline, as 

predicted by the thermoelastic model, is shown in Fig. 9. The maximum 

amo\lllt of surface motion which can result from the emplacement of the 

canister occurred at this point. The motion was once &.gain quite small, 

i.e., less than .15 mm after 30 years. The canister rise due to expansion 

of the salt was at least an order of magnitude less than the surface 

motion. 

It shoUld be noted that in calculations (see Ref, 9) simulating the 

/. respo.t"lse of a large repository the surface motion increases with time for 

. 
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~ approximately the first 100 years and then remains relatively constant 

dw.ing the next several hundred years. It would, therefore, be 

unrealistic to extrapolate the results sh~n in Fig. 9 to long periods 

of time. 

Tne results were also examined in terms of the validity.of the assump-
... ... ....~ 
.·. ~ tion that inertia terms could be neglected from Equation (1). Equation (l), 

; 'I 
inc1uding inertia terms, can be written as follows: 

{7) 

In the analyses conducted, acceleration of the velocity field, ui' was 

small in comparison to the gravitational constant, g1 . Thus, the quantity 

· ( u - g
1

) is closely approximated by ( ~s1 ). This indicates that neglecting 

inertia terms in valid. 



V. CONCWSIONS 

The analyses performed indicate thAt verr little canister movement 

will resul.t during the heat producing life of the waste canisters. The 

transient !1.118J.yses show that initially the canister will sink. Due to 

the formation of a convective cell in the salt from beating by the wastes, 

the csnister will rise. Eventually, as the convective cell dilllinishes 

the canister begins to sink aga.in. Predicted displa.cements are less than 

a. canister length during this process. The steady-state analyses provide 

upper bounds on the magnitudes of upward velocity possible during be$ting, 

In all cases, th.e velocities are sufficiently small to indicate very 

little movement will occur while tbe canister is capable of producing heat. 

The thermoelastic analyses predict little surface upheaval and indicate 

that the free expansion assumption used in the viscous flaw snalysis is 

reasonable • 

The an&lyses performed apply only to a single canister in a large 

salt medium. The combined effect of many canisters cannot be inferred { 

from superposition o"f the single canister results. Separate analyses are 

being performed to address the multiple canister problem. 
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Density 

Specific heat 

Conductivity 

Expansivity 
(Volumetric) 

Viscosity .. 
Variable 

Constant 

Bullt modulus 

Shear modulus 

* Canister 

Density 

Specific heat 

Conductivity 

E:x:pa.nsivity 

Viscosity 

2167 kS/m3 

921 
watt-sec 

kgK 

TABlE 1 

Material Properties 

3 ~ at 500 K mK 

5 ~ at 300 K mK 

1.2 X l0-4/K 

0.455 x 104e 8~82 Pa-sec T < 383 K 

0~25 x 1014 Pa-sec T > 383 K 

0.5 X 1015 Pa-sec 

K = 13.1 GPa 

G = 5.03 GPa 

Varying between 2000 and 5800 Js.g/m3 

500 
watt-sec 

kgK 

200~ mK 

Neglected 

1 x 1020 Pa-sec (rigid) 

Heat generation 3.5 kw/canister 
rate 
(Initial) 

* Properties of steel used 

TPRC [7] 

TPRC [7] 

Memo fran R. Acton to 
D. Powers of 4/20/76 

Personal communication 
with W. Wawersik • 5163 

Source - RE/SP.EC Report 
RSI·0030, June 1975 

Mark' s Handbook [ 6) 

Mark's Handbook [6] 

Personal cammmication 
with G. Barr - 1141 
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1!.\BIE 2 

Btet4y~State Cani1ter MC¥ementt 

Caniater 
Canister Centerline 

~ Conductivity Viscosity Dens it:£ Radius 
Velocity 

~x 1010mLaec~ 

Max:l.mum. DiltfJ1ce 
Tnveled in tbe 

lir1t 3000 Yeara 
After Emplacement 

A Constant Constant 4100 

B Variable Constant 4100 

c v v 2000 

D V V 3000 

E V V 4-100 

F V V 5800 

G V V 4100 

* H C c 4100 

* I V C 4100 

Conductivity Constant 

Variable 

Viscosity Constant 

Variable 

.625 .265 

.625 .215 

.625 .037 

.625 .027 

.625 .Ol65 

.625 -.0001 

.278 .025 

.278 2.83 

.625 2.09 

4 0 !!ll • m K 

10.76 e-2.554 x 10-lr ~~t 

15 
~ : 0.5 x 10 Pa•sec 

~ • .455 x 104 e8589/T Pa-see 

forT ~ 383 K 

14 
~ • 0.25 x 10 Pa-sec 

T < 383 K 

* 14 Viscosity ~ ~ 0.5 x 10 Pa-see {extremely low) 
t Steady-state analyses provide onlY an upper bound to the max1vmm canister 
velocity. The results cannot be used to determine overall movement over 
loog periods of time. Rather, velocities can only be uaed to place an 
upper bound on IIIOVement while movement is occurring (times less than 
3000 years). During the first 3000 years following emplacement, the u.e 
or a constant souree.equal to the initial (maximum) power provides 70 
times too much energy to the system. 

2.51 m 

0.35 

0.26 

0.16 

-.001 

.25 

28.3 

20.9 
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Figure 1. Canister Movement Axisymmetric Model 
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INTERIOR REGION 
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I 
t 

Figure 2. Viscoplastic Flaw and Heat Transfer Coaree Mesh 
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. , ... 500 m ...I 

I INTERIOR REGION 

Figure 3. Viseoplastic Flaw and Heat Transfer Fine Mesh 
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Figure 4. Thermoelastic Finite Element Mesh 
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Figure 5. Canister Velocity History 
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Figure 7. Salt Velocity Field 
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